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The action of Vlasov waves on the velocity 
distribution in a plasma 

By J. W. DUNGEY 
Atomic Weapons Research Establishment, Aldermaston 

(Received 19 December 1960) 

A one-dimensional model with no magnetic field is considered. It is supposed 
that the plasma starts in thermal equilibrium and then a current is forced to 
grow. Instability leads to the growth of waves, which are shown to stir the 
distribution in phase space, but only over a limited range of velocity. It is con- 
cluded that in order to restore stability the energy in the wave must become 
comparable to the energy of drift. 

1. Introduction 
Vlasov waves grow when a plasma is electrostatically unstable. This kind of 

instability may be expected in a great variety of devices designed for confining 
a plasma and in particular has been suggested as the cause of ‘pump out ’ in Stel- 
larators (Bernstein, Friedman, Kulsrud & Rosenbluth 1960). The existing theory 
tells us little more than the stability condition in the simplest case, in which the 
problem is one-dimensional, the plasma is uniform in space and all magnetic 
effects are ignored. From here it is possible to proceed in various directions by 
removing different simplifying assumptions, and obviously one should not re- 
move more than one at  a time. The aim of this investigation is to remove the 
assumption of linearization. Linearized theory gives the stability condition, but 
it is important to know how strong the waves grow and this is an essentially non- 
linear problem. 

The problem is posed as follows. Suppose that a plasma is initially in thermal 
equilibrium and a gradually increasing current is driven through it by an electric 
field. If UD is the difference between the mean velocities of the electrons and ions 
and v, is the thermal velocity of electrons, Vlasov instability sets in when 
UD reaches about 0 . 9 3 ~ ~ .  It is evident that the instability takes energy from the 
electric field, but suppose that the external circuit is such that the current still 
increases (this is usual in practice). How strong do the Vlasov waves grow and 
what is their effect on the overall behaviour of the plasma? 

If the velocity distribution were always Maxwellian, one could say that the 
Vlasov waves heat the plasma and the rise in temperature tends to restore 
stability. The time scale of the Vlasov waves is related to the plasma frequency, 
which in practice is very large. Typically the plasma period may be 10-12sec, 
while the time scale T for the growth of the current is seldom less than sec. 
Consequently, even if the growth time of the waves were hundreds of plasma 
periods it would still be short compared with T. This suggests that the waves will 
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adjust their amplitude in the following way. The heating due to the waves should 
raise the temperature at  such a rate that the plasma is always near the critical 
condition: drift velocity z 0.93 x thermal velocity. Then the temperature must 
rise with a time scale N T, which suggests that the wave amplitude is not large. 
If so, the linear theory may be valid, in which case the heating should be obtained 
from the second-order terms. 

In  the linear theory the distribution function f, for say the electrons, is written 
f(0) + f ( l ) ,  where f ( l )  is the first-order perturbation. The linearized collision-free 
Boltzmann equation then gives 

where w the angular wave frequency is complex, k the wave number is real and E 
the electric field is a first-order quantity proportional to exp [i(ot + k r ) ]  (there is 
no applied field in the linear theory). The heating must depend on the component 
of the electron current density in phase with the electric field and this is propor- 
tional to the imaginary part of 

Now it has been suggested that the imaginary part of w (the growth rate) is 
small and in this case the imaginary part of the integral comes almost entirely 
from a small range of velocity near the wave velocity. This is familiar. The 
growth, or, in the case of Landau damping, decay, is almost entirely due to 
‘trapped’ particles with velocities near the wave velocity. The width of the 
velocity range involved is of order k-l$(w). Now, because few particles are 
involved, we can have no confidence in the assumption that the velocity dis- 
tribution remains Maxwellian, and a deeper investigation is required. 

2. The general stability condition 
The stability condition for any velocity distribution (uniform in space) has 

been obtained by several authors and is given in an elegant form by Penrose 
(1960). 

Penrose’s analysis also enables us to obtain the velocity and an estimate of 
the wavelength of the fastest growing wave and his results will now be sum- 
marized. They involve the function F(u)  defined by 

F(u)  = C h e 5  fj(u)/mi, 
j 

where f j(u) is the one-dimensional distribution function for the j t h  type of par- 
ticle. The dispersion equation is then 

k2 = Z ( w / k ) ,  

where z(g) = (u - <)-‘(dP/du) du 

in the upper half-plane and is continued analytically across the real axis. 
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Penrose represents this by drawing the curve of real 6 on the 2-plane and 
obtains a necessary and sufficient condition for instability, which is that F(u)  
should have a minimum at some value 5 of u such that 

(u - 0 - 2  [P(u) - F(6)] du > 0. s_m_ ( 3 )  

In  the present problem it is easy to see that F(u)  already has a minimum when 
U, exceeds a small fraction of vte and hence that the onset of instability at  
U, = 0 . 9 3 ~ ~ ~  is due to the integral in (3) changing from negative to positive. 

FIGURE 1 

When U, just exceeds the critical value, the curve of real con the 2-plane looks 
like figure 1, and the minimum c = 6 is the point where the curve intersects the 
positive real axis. The growing waves are represented by points between here and 
the origin and, so long as the growth rate is small, satisfy the approximate dis- 
persion relation 

where ki is the value of 2 at c = 6. The velocity of the waves is close to 6 and 
the growth rate is related to the wavelength by 

~ ( u ) . z  k(k2 - k i )  4[(dZ/dc)~26]. 

The fastest growing wavelength is given by k, = k,/ , , /3,  and hence 
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To obtain an order of magnitude for k,, (Y[(dZ/dc)~2~]}-' may be approxi- 
mated by 9[(dZ/d&+.], assuming that 9i'(dZ/dc)c=c is smaller. When 6 is on the 
upper side of the real axis, we see from (2) that 

9 ( Z )  = n(dF/du),,p (6) 
and then 9(dZ /dc )  = n(d2F/dU2),=c. 
For a Maxwellian distribution 

d2fldv2 = 7r-h(m/2kT)8 (mv2/kT - 1) exp ( -mv2/2kT). 

Now at the minimum, mu2 is the same for protons and electrons and near the 
critical condition is about 1.7kT. Consequently, the ion contribution dominates 
in (d2F/du2)),,s and we find 

for deuterium. 

2n/kl of about 1 mm. 

3. Stirring in phase space 
We now consider the effect of the wave on the velocity distribution. This 

may not be very sensitive to the growth rate and, since we are interested in the 
case where the growth rate is small, it seems sensible to consider the case in 
which there is no growth or decay, that is the frequency is real. Such waves 

k! - 0-3Y(w) ne2(n3m,/2k3T3)& - 5.  10-7Y(w) nT-8 

With Y(w) - lo6 sec-I, n N 1016 cm-3 and T N 107 OK this gives a wavelength 

X 

FIGURE 2 

have been studied by Bernstein, Greene & Kruskal (1957), who showed that 
solutions representing waves of finite amplitude and having a considerable 
degree of arbitrariness exist. Their method is to use a frame moving with the 
wave and demonstrate the existence of steady solutions. We also use this frame, 
but study the effect of the electric field belonging to the wave on the distribution 
function, supposing that the latter is not chosen to give a steady state. In the 
chosen frame we neglect the variation of the electric field with time and it is then 
possible to draw the trajectories of particles in phase space. This is done in figure 2 
for an electric field E cos kx, which is chosen for simplicity. It is seen that there 
is a row of 'eddies' with their centres on the zero velocity of this frame. Outside 
the eddies the trajectories are wavy lines whose amplitude decreases with the 
mean value of v like v-I, because the frequency seen by a particle with mean 
velocity v is klv. 
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The period of rotation in the centre of an eddy is given by the period of simple 
harmonic motion in a field - Ekx. Hence the angular velocity in the centre of an 
eddy is 

The electrostatic potential is - k-lE sin kx and the half-width of the eddies in 
velocity is 

This may be compared with the range of velocities of trapped particles found 
above from the linear theory; when the growth rate is small we may expect a to 
be the larger. 

S = (eEk/m)). (7) 

(8) a = 2(eE/mk)* = 2k-lS. 

I* 

\ 
FIGURE 3 

Now the collision-free Boltzmann equation is equivalent to Liouville’s theorem 
which states that if one follows the trajectory of a particle in position, velocity 
and time the distribution function remains constant. Thus in a steady state the 
contours of constant f must be the trajectories of figure 2 .  In a non-steady state 
the motion depicted in figure 2 will ‘stir ’ the distribution and this will be much 
more effective in the region of the eddies than elsewhere. The effect on the distribu- 
tion may be seen by supposing that there is a contour of constant f passing through 
the centres of all the eddies. As the eddies rotate this will be wound into spirals, 
one in each eddy. Each rotation of an eddy adds a turn to the spiral and hence 
the spiral becomes tighter. The effect on the distribution function at a position 
corresponding to the centre of an eddy (that is a potential trough) is shown in 
figure 3. The dotted line represents the unperturbed distribution function, and 
the full line shows the rapid variations caused by the stirring; each turn of the 
eddy increases the numbers of maxima and minima in this curve by two. It 
then follows that the scale of variation off with velocity in the eddies becomes 
smaller and hence that la2flav21 becomes larger. This shows that collisions must 
be taken into account and the Fokker-Planck equation is appropriate. The full 
Fokker-Planck expression (Rosenbluth, MacDonald & Judd 1957) is compli- 
cated, but for a preliminary study we need only note that it has the form 

where G and H depend on integrals over v involving f, but these are unlikely to 
be greatly altered by the sort of disturbance shown in figure 3. Thus the Fokker- 
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Planck term may be described as representing diffusion of particles invelocity, the 
stable distribution function towards which they tend to diffuse being the Max- 
wellian distribution determined by the number of particles and their t oh l  
momentum and energy. Like a diffusion term it removes small-scale variations 
more quickly than large-scale variations. As I Pf/av21 is increased by the stirring 
the Fokker-Planck term must eventually become important. When it smooths 
out the oscillations in figure 3, the full curve of figure 4 results. This then gives a 
qualitative idea of the effect of the wave on the distribution function: the distribu- 

tion function develops a ledge centred on the wave velocity. Clearly particles 
have been transported across the wave velocity from the side of high f to that of 
low f. When the wave velocity is at the minimum of F, this reduces the current 
density as expected. The stirring mechanism is similar to a Fermi mechanism 
in that it tends to produce a flat distribution in the velocity range in which it 
operates. The effect on the velocity distribution tends to make it more stable, but 
it has been assumed that the current is forced to increase by the external circuit. 

4. The mechanism of stabilization 
The Penrose criterion is strictly applicable only when the distribution func- 

tions are uniform in space. It may be used to discuss the development of the 
waves, however, by formulating the problem as ‘if the waves stabilize themselves 
and die away and the spatial variation of the distribution is smeared out, does a 
new wave grow? ’ On this basis the Penrose criterion will be applied to distribu- 
tions in which ledges have developed as a result of the waves’ action. 

The difference between the effect of the waves on the electron and proton 
distributions can be seen by noting that S and a are both proportional to m-*. 
For a wave at the velocity of the original minimum the two distributions can be 
scaled, all velocities being smaller for the ions in the ratio (m,/mi)* and times 
being longer for the ions in the ratio (mi/me)*. The collision time also behaves 
in this way and hence the Fokker-Planck term also scales. Because the ledge 
developed in the electron distribution is wider than that of the ions, the minimum 
in the new distribution is at the inner edge of the electron ledge, that is at a 
velocity nearer the mean electron velocity than the original minimum. The 
electric field driving the current also moves the electron distribution in this 
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direction, and only moves the ion distribution by a fraction me/mi as much. 
Consequently, one expects the minimum to move away from the mean ion 
velocity, and one may expect from Penrose's criterion that the velocity of the 
wave U, will follow that of the minimum. As U, changes, the eddies in figure 2 
sweep across the distribution and churn particles down the slope. If U, could 
sweep far enough across the electron distribution, it would be possible by means 
of a succession of weak waves to  stabilize the plasma for a given current density; 
this has been verified by computations. It is unreasonable that the minimum can 
move very far from the mean ion velocity, however. On the ledge formed by the 
action of the wave afe/av is small, but not very small; even thoughf, is very nearly 
constant in the centre of an eddy, there must be an appreciable variation between 
the eddies which contributes to the space average. In  the tail of the Maxwell 
distribution for ions, however, afi/av decreases very rapidly and so the minimum 
cannot be far out in their tail; more precisely the difference between the velocity 
at the minimum and the mean velocity of the ions cannot be many times vti 
unless the ion tail itself were spread by the wave sufficiently, but it has already 
been seen that the effect of the wave on the ions is much less than its effect on 
the electrons. 

The argument based on figure 1 that U, must be near the velocity of minimum 
F breaks down when F is nearly constant over a range of velocities including the 
minimum, which is the case after the formation of a ledge. Then from (6), Y(Z) 
for real is small over the whole range of velocity in which F is nearly constant. 
It is then possible for the fastest growing wave to have its velocity anywhere 
in this range and, if U, were near the end of the range nearest the electrons, 
stabilization by weak waves would be possible. In  order for this to happen B(Z)  
for U, must be less than 9(2)  for [ but still positive. With a Maxwellian distribu- 
tion distorted by a small ledge, however, one finds that g ( Z )  increases as [ 
moves towards the electrons, and consequently U, can still not be far from the 
ion velocity. When the current density grows to several times its original critical 
value, it  is necessary to redistribute the velocities of a large proportion of the 
electrons in order to restore stability. This requires the trapping of a large 
fraction of the electrons and hence the potential difference in the wave must be 
comparable to the energy of relative motion - +me U:; the energy of the wave is 
also of this order. With the numerical values given previously the rate of stirring 
1.5' is then - 5.1010sec-1 for electrons and N l0gsec-1 for deuterons. Thus the 
stirring process, which has been assumed to form ledges in the distributions, has 
plenty of time to occur. 

I am indebted to Dr F. D. Kahn for several enjoyable and very helpful 
discussions. 
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